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Summary: Thermally generated stannylenes R2Sn insert efficiently into Sn-X 

bonds (X = Cl, Br, SPh) as well as into electron deficient Sn-Sn bonds e.g. 

in Me2(Hal)Sn-Sn(Hal)Me2, but not into hexaalkyldistannanes R6Sn2 under the 

same conditions; stannylenes R2Sn always behave as nucleophiles here. 

During our studies on heavy carbene analogues R2M3, we found two convenient 

thermal stannylene sources: The 7-stannanorbornene derivative 1' gives at and 

above -lO°C a free stannylene _I2 via an unimolecular splitting. On the other 

hand, 2~ (13C-NMR, -55'C, THF:-- 6 = 13.32 ppm (s)) is formed from dilithio 

anthracene as indicated via 2, which exists in two forms (6 = 11.73 and 10.14 

ppm (is, l:l), 14.53 and 14.87 ppm (2s, 1:1))5: 
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Now we wish to report a smooth insertion of R2Sn, R= Me, Et(the figures & 

and 2s indicating the method of generation) into the Sn-Cl bond of Me2SnC12, 

but not of Me3SnC16 and Et2SnC12. Clearly both polar and steric effects on the 

Sn-Cl bond are of influence, the higher electron deficiency of the tin atom 

in Me2SnC12 seems to be important supposing a nucleophilic behaviour of the 

stannylenes R2Sn: 
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Scavengers with one Me residue, MeRSnC12, always give insertion into the Sn-Cl 

bond, but yields decrease with increasing bulkiness of R. Because of similar 

solubilities, redistributions, and high sensibilities against temperature and 

light the resulting distannane dihalides could not be isolated but have been 

identified and determined by 'H- and 'I9 Sn-NMR, see table, and allcylation to 

hexaalkyldistannanes. Both stannylene sources and all analytical methods yield 

quite consistent results. 

Table: 

R= 

Me 

Et 

Pr 

tBu 

Ph 

Insertion of Me2Sn 1~ or 2_a into the Sn-Cl bond of MeRSnC12 -- 

Products Me2(Cl)Sn-Sn(Cl)MeR 

yields in % with 

100 1 100 

93 ~ 90 

Q45 ; 78 

Q45 ; 65 

$100 %I00 

'H-NMRa) of 

MeSn groups (28OC) 
__~ . -. -- 

0.80(12H) 

0.79(6H), 0.73(3H) 

0.79(6H), 0.75(3H) 

0.78(6H), 0.67(3H) 

0.80(6H), 0.95(3H) 

"'Sn-NMRb) 

(-80°C) 

-138.8 (SnMe2) 

-136.4(SnMe2),-120.0(SnEtMe) 

__ 

_- 

-- 

a) in THF, 6 in ppm, standard TMS; similar values are recorded in CH2C12. 

b) in THF containing LiCl, 6 in ppm, standard Me4Sn. 

Similar insertions have been established for the Sn-Br and Sn-SPh bonds 

generating the corresponding distannanes 1 and 2. Since the latter prepared 

independently proved to be thermal stannylene SOUrCeS2, the following 

equilibria are resulting: 

'H-NMR (C6H6), standard TMS 
Me& + Me,SnBr, c Me,Sn-SnMe2 3 

Fir $r 
5 6 = 0.67 ppm (s, 2J(Sn-H) = 50/53 

3J(Sn-H) = 14 Hz) 

Me2 Sn + Me&CiPh)z = Me2Sn- SnMez L 
I I = 6 = 0.35 ppm (s, 2J(Sn-H) = 48/51 

PhS .$Ph 3 J(Sn-H) = 14 Hz ) 

Further strong evidence for these equilibria is given 

excess Me SnBr2 2 or, resp., Me2Sn(SPh)2 towards higher 

or, resp., 4 (Fig. 2) ('H-NMR): 

Hz, 

Hz, 

by their shift by 

contents of 2 (Fig. 1) 
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a) Stannylene extrusion/insertion with pure 1 or f in benzene at 

8O'C. b) in presence of 5 moles of Me2SnBr2 or Me2Sn(SPhJ2 per mol 

2 or I. c) slow deposition of elemental tin. 

way, these experiments show clearly the reversibility of the poly- 

merization of Me2Sn718, competing with the insertions under the conditions 

mentioned above. 

In hexaalkyldistannanes R3Sn-SnR3 the Sn-Sn bond apparently is rather inert 

towards thermal stannylene insertion: Neither & (R = Me, O°C) nor 2~ (R = Me, 

Et, -2OOC) gave us insertions into Me6Sn2' and Et6Sn2. Only above 100°C an 

insertion of R2Sn into R6Sn2 giving R3Sn-R2Sn-SnR3 has been observed'2a13. 

Therefore, we were surprised that dihalo distannanes Me2HalSn-SnHalMe2, at 

20°C or even OOC, clearly gave a stannylene insertion into their Sn-Sn bond, 

besides the expected Sn-Cl insertion (estimation by 'H-NMR): 

(D,C),Sp-Me,Sn-Spte, 

k (R = CD,) + Me,HalSn-SnHalMe, Hal Hal % 

Hal= Z(%) PC%) 'H-NMR (CH2C12), standard TMS 

Cl 62 38 

Br 66 34 

2 rn0l.S 
L Me,S,n - (CDJ2Sn-Spa, 

Hal Hal P 

_ - 

0.83 (s, Me2SnC1), 0.70 ppm (s, Me2Sn) 

0.97 (s, Me2SnBr), 0.73 ppm (s, Me2Sn) 

/' Bu,Sn-Me,Sn-SnMe, 7 

&(R =Bu) + Me,CISn -SnCIMe, pJ Cl Cl I- 
L Me,p - Bu,Sn-?nMe, J 

Cl Cl 

Bu,MeSn - Me,Sn - SnMe, + Me,Sn - Bu,Sn -SnMe, l 

Wdll#I / 0.C 
Qc 

3.0 : 2.0 

Whereas with (D3CJ2Sn the overall yield of 5 + p is nearly quantitative, 

with Bu2Sn an overall insertion of only 2% is found: Steric influences are 

seen to be important also in this case. 
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The high activity of the Sn-Sn bond in the halo distannanes can be derived 

from its electron deficiency compared with the Sn-Sn bond in the peralkylated 

distannanes. This is confirmed by the high activity of another electron defi- 

cient distannane14, the product being identified by 'H-NMR (CH2C12, 6 = 0.30 

(s, 9H), 0.67 ppm (s, 6H)) and degradation by iodine: 

12 (R=blel + M%Sn-Sr&Fs), J@b Me,Sn-Me$n-Sn(~F,I, 

Again, the thermally generated stannylenes R2Sn behave as nucleophiles as 

they did during insertion into Sn-X bonds, see above. This is in accordance 

with the assumption of singlet species R2Sn:, whose paired electrons act as 

donors. It is of interest that a singlet ground state is found for'>tanny- 

lenes also by quantum chemical calculations'6. 
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