INSERTION REACTIONS OF THERMALLY GENERATED STANNYLENES R₂Sn INTO Sn-X $(X = CL, Br, SPh)$ AND Sn-Sn BONDS

Lutz-Werner Gross, Rainer Moser¹, Wilhelm P. Neumann*, and Karl-Heinz Scherping² Lehrstuhl für Organische Chemie I der Universität Dortmund Otto-Hahn-Str., D 4600 Dortmund 50

Summary: Thermally generated stannylenes R_2 Sn insert efficiently into Sn-X bonds $(X = CL, Br, SPh)$ as well as into electron deficient Sn-Sn bonds e.g. in Me₂(Hal)Sn-Sn(Hal)Me₂, but not into hexaalkyldistannanes R_f Sn₂ under the same conditions; stannylenes R_2 Sn always behave as nucleophiles here.

During our studies on heavy carbene analogues R_2M^3 , we found two convenient thermal stannylene sources: The 7-stannanorbornene derivative 1^4 gives at and above -10^{O} C a free stannylene $1a$ via an unimolecular splitting. On the other hand, $2a$ (¹³C-NMR, -55^oC, THF: δ = 13.32 ppm (s)) is formed from dilithio anthracene as indicated via $\underline{2}$, which exists in two forms ($\delta = 11.73$ and 10.14 ppm (2s, 1:1), 14.53 and 14.87 ppm (2s, 1:1))⁵:

Now we wish to report a smooth insertion of R₂Sn, R= Me, Et(the figures 1a and $2a$ indicating the method of generation) into the Sn-Cl bond of Me₂SnCl₂, but not of Me₃SnCl⁶ and Et₂SnCl₂. Clearly both polar and steric effects on the Sn-Cl bond are of influence, the higher electron deficiency of the tin atom in $Me₂SnCl₂$ seems to be important supposing a nucleophilic behaviour of the stannylenes R_2Sn :

$$
\underbrace{\text{Me}_2\text{Sn}}_{\underbrace{\text{Me}_2\text{SnCl}_2}\longrightarrow \text{Me}_2\text{ClSn-SnClMe}_2} \rightarrow \text{Me}_2\text{ClSn-SnClMe}_2
$$
\n
$$
\underbrace{\text{Me}_2\text{SnCl}_2}\longrightarrow \text{Me}_3\text{Sn-SnClMe}_2
$$

Scavengers with one Me residue, MeRSnCl₂, always give insertion into the Sn-Cl bond, but yields decrease with increasing bulkiness of R. Because of similar solubilities, redistributions, and high sensibilities against temperature and light the resulting distannane dihalides could not be isolated but have been identified and determined by $1H$ - and 119 Sn-NMR, see table, and alkylation to hexaalkyldistannanes. Both stannylene sources and all analytical methods yield quite consistent results.

<u>Table:</u> Insertion of Me₂Sn <u>1a</u> or <u>2a</u> into the Sn-Cl bond of MeRSnCl₂

Products Me_2 (Cl)Sn-Sn(Cl)MeR

a) in THF, δ in ppm, standard TMS; similar values are recorded in CH₂Cl₂. b) in THF containing LiCl, δ in ppm, standard Me₄Sn.

Similar insertions have been established for the Sn-Br and Sn-SPh bonds generating the corresponding distannanes 3 and 4 . Since the latter prepared independently proved to be thermal stannylene sources², the following equilibria are resulting:

H-NMR $(C_{6}H_{6})$, standard TMS Me₂Sn + Me₂SnBr₂ === Me₂Sn-SnMe₂ 3 **5 6** $\frac{1}{2}$ **51 51 52 53**
5 5 51 $\text{J(Sn-H)} = 14 \text{ Hz}$) **Me₂Sn + Me₂Sn(SPh)₂ = Me₂Sn - SnMe₂** $\frac{1}{2}$ **6 = 0.35 ppm (s,** $\frac{2}{3}$ **J(Sn - H) = 48/51 PhS SPh** ${}^{3}J(Sn-H) = 14 Hz$ Hz, Hz,

Further strong evidence for these equilibria is given by their shift by excess ${\sf Me_2SnBr_2}$ or, resp., ${\sf Me_2Sn(SPh)}_2$ towards higher contents of $\underline{3}$ (Fig. 1) or, resp., 4 (Fig. 2) ($H-MMR$):

Fig. 1+2: a) Stannylene extrusion/insertion with pure <u>3</u> or <u>4</u> in benzene at 80°C. b) in presence of 5 moles of $Me₂SnBr₂$ or $Me₂Sn(SPh)₂$ per mol $\frac{3}{2}$ or $\frac{4}{2}$. c) slow deposition of elemental tin.

By the way, these experiments show clearly the reversibility of the polymerization of Me₂Sn^{7,8}, competing with the insertions under the conditions mentioned above.

In hexaalkyldistannanes R_3 Sn-Sn R_3 the Sn-Sn bond apparently is rather inert towards thermal stannylene insertion: Neither $1a$ (R = Me, O°C) nor $2a$ (R = Me, Et, -20^OC) gave us insertions into $Me₆Sn₂⁹$ and $Et₆Sn₂$. Only above 100^OC an insertion of R_2 Sn into R_6 Sn₂ giving R_3 Sn- R_2 Sn-Sn R_3 has been observed^{12,13}.

Therefore, we were surprised that dihalo distannanes Me₂HalSn-SnHalMe₂, at 20° C or even 0° C, clearly gave a stannylene insertion into their Sn-Sn bond, besides the expected Sn-Cl insertion (estimation by 1_H -NMR):

1a
$$
(R = CD_3)
$$
 + Me₂HaISn-SnHaIME₂ 20°
\n 2 moles
\n $4 \text{ Me}_2\text{Sn} - (CD_3)_2\text{Sn} - \text{SmMe}_2$
\n $4 \text{ Me}_2\text{Sn} - (CD_3)_2\text{Sn} - \text{SmMe}_2$
\n $4 \text{ Ha} + \text{Ha} + \text{Ha}$

3.0 : **2.0**

Whereas with $(D_3C)_2$ Sn the overall yield of $\frac{5}{4} + \frac{6}{2}$ is nearly quantitative, with Bu₂Sn an overall insertion of only 2% is found: Steric influences are seen to be important also in this case.

The high activity of the Sn-Sn bond in the halo distannanes can be derived from its electron deficiency compared with the Sn-Sn bond in the peralkylated distannanes. This is confirmed by the high activity of another electron deficient distannane¹⁴, the product being identified by ¹H-NMR (CH₂C1₂, δ = 0.30 (s, 9H), 0.67 ppm (s, 6H)) and degradation by iodine:

1a (R=Me) + Me₃Sn-Sn(C₆F₅)₃ 20^oC+ Me₃Sn-Me₂Sn-Sn(C₆F₅)₃

Again, the thermally generated stannylenes R_2Sn behave as nucleophiles as they did during insertion into Sn-X bonds, see above. This is in accordance with the assumption of singlet species R₂Sn:, whose paired electrons act as donors. It is of interest that a singlet ground state is found for stannylenes also by quantum chemical calculations¹⁶.

References:

l)R.Moser, Dissertation Univ. Dortmund 1980.

- 2)K.-H.Scherping, Dissertation Univ. Dortmund 1981.
- 3)W.P.Neumann and M.Schriewer, Tetrahedron Lett. 21, 3273 (1980), B.Mayer and W.P.Neumann, ibid. 4887. Further references are given there.
- 4)W.P.Neumann, Ch.Grugel, and M.Schriewer, Angew. Chem. Internat. Edit. fi, 543 (1979).
- 5)A full report of the corresponding 119 Sn- and 13 C-NMR investigations of $R₂Sn¹$ will be given elsewhere.
- 6)Other authors¹¹ suggest, however, insertion into the Sn-Cl bond of Me₃SnCl forming $Me_{5}Sn_{2}Cl$ and polystannanes $Me_{2n+1}Sn_{n}Cl$ from other $R_{2}Sn_{1}$ sources.
- 7) Transient $(Me_2^5sn)_n$ formation and degradation can be observed (¹H-NMR: δ = 0.72 or 0.47 ppm) during the thermolysis of $\frac{3}{2}$ or, resp., $\frac{4}{3}$.
- 8)This is consistent with older findings that (Ph_2Sn) _n gives Ph_2Sn insertion into Ph_2SnCl_2 at 140^oC yielding first (presumably) $Ph_2ClSn-SnClPh_2$ decomposing to Ph₃SnCl and other products: H.G.Kuivila and E.R.Jakusik, J. Org. Chem. 26, 1430 (1961).
- 9) Under other conditions, a Me₂Sn insertion into Me₆Sn₂ giving Me₈Sn₃ is mentioned¹⁰ but not confirmed in later investigations¹¹.
- 10)D.P.Arnold, M.J.Cuthbertson, and P.R.Wells, J.Organomet.Chem.184, 39 (1980)
- ll)M.J.Cuthbertson and P.R.Wells, J.Organomet.Chem. 216, 331 and 349 (1981).
- 12)U.Schröer and W.P.Neumann, Angew. Chem. Internat. Edit. 14, 246 (1975).
- 13)Ch.Grugel, W.P.Neumann, and P.Seifert, Tetrahedron Lett. 1977, 2205.
- 14)Neither Me₂(C₆F₅)Sn-Sn(C₆F₅)Me₂ nor Me₂(AcO)Sn-Sn(OAc)Me₂ did react under the same conditions, the latter certainly because of the strong pentacoordination between Sn atoms and the acetyl residues¹⁵.
- 15)T.N.Mitchell, M.El-Behairy, Helv. Chim. Acta 64, 628 (1981).
- 16)G.Olbrich, Chem. Phys. Lett. 11, 110 (1980), and private communication.

IReceived in Germany 19 November 1981)